Skip to main content

User account menu

  • Log in
DBS-Logo

Database Group Leipzig

within the department of computer science

ScaDS-Logo Logo of the University of Leipzig

Main navigation

  • Home
  • Study
    • Exams
      • Hinweise zu Klausuren
    • Courses
      • Current
    • Modules
    • LOTS-Training
    • Abschlussarbeiten
    • Masterstudiengang Data Science
    • Oberseminare
    • Problemseminare
    • Top-Studierende
  • Research
    • Projects
      • Benchmark datasets for entity resolution
      • FAMER
      • HyGraph
      • Privacy-Preserving Record Linkage
      • GRADOOP
    • Publications
    • Prototypes
    • Annual reports
    • Cooperations
    • Graduations
    • Colloquia
    • Conferences
  • Team
    • Erhard Rahm
    • Member
    • Former employees
    • Associated members
    • Gallery

Target-driven merging of Taxonomies

Breadcrumb

  • Home
  • Research
  • Publications
  • Target-driven merging of Taxonomies

Raunich, S. ; Rahm, E.

Target-driven merging of Taxonomies

arXiv Report 1012.4855v1

2010 / 12

Andere

Futher information: http://arxiv.org/abs/1012.4855

Abstract

The proliferation of ontologies and taxonomies in many domains increasingly demands the integration of multiple such ontologies. The goal of ontology integration is to merge two or more given ontologies in order to provide a unified view on the input ontologies while maintaining all information coming from them. We propose a new taxonomy merging algorithm that, given as input two taxonomies and an equivalence matching between them, can generate an integrated taxonomy in a fully automatic manner. The approach is target-driven, i.e. we merge a source taxonomy into the target taxonomy and preserve the structure of the target ontology as much as possible. We also discuss how to extend the merge algorithm providing auxiliary information, like additional relationships between source and target concepts, in order to semantically improve the final result. The algorithm was implemented in a working prototype and evaluated using synthetic and real-world scenarios.

Recent publications

  • 2025 / 9: Generating Semantically Enriched Mobility Data from Travel Diaries
  • 2025 / 8: Slice it up: Unmasking User Identities in Smartwatch Health Data
  • 2025 / 7: MPGT: Multimodal Physics-Constrained Graph Transformer Learning for Hybrid Digital Twins
  • 2025 / 6: Leveraging foundation models and goal-dependent annotations for automated cell confluence assessment
  • 2025 / 6: SecUREmatch: Integrating Clerical Review in Privacy-Preserving Record Linkage

Footer menu

  • Directions
  • Contact
  • Impressum