Skip to main content

User account menu

  • Log in
DBS-Logo

Database Group Leipzig

within the department of computer science

ScaDS-Logo Logo of the University of Leipzig

Main navigation

  • Home
  • Study
    • Exams
      • Hinweise zu Klausuren
    • Courses
      • Current
    • Modules
    • LOTS-Training
    • Abschlussarbeiten
    • Masterstudiengang Data Science
    • Oberseminare
    • Problemseminare
    • Top-Studierende
  • Research
    • Projects
      • Benchmark datasets for entity resolution
      • FAMER
      • HyGraph
      • Privacy-Preserving Record Linkage
      • GRADOOP
    • Publications
    • Prototypes
    • Annual reports
    • Cooperations
    • Graduations
    • Colloquia
    • Conferences
  • Team
    • Erhard Rahm
    • Member
    • Former employees
    • Associated members
    • Gallery

EAGER: Embedding-Assisted Entity Resolution for Knowledge Graphs

Breadcrumb

  • Home
  • Research
  • Publications
  • EAGER: Embedding-Assisted Entity Resolution for Knowledge Graphs

Obraczka, D. ; Schuchart, J. ; Rahm, E.

EAGER: Embedding-Assisted Entity Resolution for Knowledge Graphs

Arxiv

2021 / 01

Report

Abstract

Entity Resolution (ER) is a constitutional part for integrating different knowledge graphs in order to identify entities referring to the same real-world object. A promising approach is the use of graph embeddings for ER in order to determine the similarity of entities based on the similarity of their graph neighborhood. The similarity computations for such embeddings translates to calculating the distance between them in the embedding space which is comparatively simple. However, previous work has shown that the use of graph embeddings alone is not sufficient to achieve high ER quality. We therefore propose a more comprehensive ER approach for knowledge graphs called EAGER (Embedding-Assisted Knowledge Graph Entity Resolution) to flexibly utilize both the similarity of graph embeddings and attribute values within a supervised machine learning approach. We evaluate our approach on 23 benchmark datasets with differently sized and structured knowledge graphs and use hypothesis tests to ensure statistical significance of our results. Furthermore we compare our approach with state-of-the-art ER solutions, where our approach yields competitive results for table-oriented ER problems and shallow knowledge graphs but much better results for deeper knowledge graphs.

Recent publications

  • 2025 / 9: Generating Semantically Enriched Mobility Data from Travel Diaries
  • 2025 / 8: Slice it up: Unmasking User Identities in Smartwatch Health Data
  • 2025 / 6: SecUREmatch: Integrating Clerical Review in Privacy-Preserving Record Linkage
  • 2025 / 6: Leveraging foundation models and goal-dependent annotations for automated cell confluence assessment
  • 2025 / 5: Federated Learning With Individualized Privacy Through Client Sampling

Footer menu

  • Directions
  • Contact
  • Impressum