Skip to main content

User account menu

  • Log in
DBS-Logo

Database Group Leipzig

within the department of computer science

ScaDS-Logo Logo of the University of Leipzig

Main navigation

  • Home
  • Study
    • Exams
      • Hinweise zu Klausuren
    • Courses
      • Current
    • Modules
    • LOTS-Training
    • Abschlussarbeiten
    • Masterstudiengang Data Science
    • Oberseminare
    • Problemseminare
    • Top-Studierende
  • Research
    • Projects
      • Benchmark datasets for entity resolution
      • FAMER
      • HyGraph
      • Privacy-Preserving Record Linkage
      • GRADOOP
    • Publications
    • Prototypes
    • Annual reports
    • Cooperations
    • Graduations
    • Colloquia
    • Conferences
  • Team
    • Erhard Rahm
    • Member
    • Former employees
    • Associated members
    • Gallery

Scalable Business Intelligence with Graph Collections

Breadcrumb

  • Home
  • Research
  • Publications
  • Scalable Business Intelligence with Graph Collections

Petermann, A. ; Junghanns, M.

Scalable Business Intelligence with Graph Collections

it - Information Technology, Special Issue: Big Data Analytics, Vol. 58 (4), 2016, pp. 166–175

2016 / 08

Paper

Abstract

Using graph data models for business intelligence applications is a novel and promising approach. In contrast to traditional data warehouse models, graph models enable the mining of relationship patterns. In our prior work, we introduced an approach to graph-based data integration and analytics called BIIIG (Business Intelligence with Integrated Instance Graphs). In this work, we compare state-of-the-art systems for graph data management and analytics with regard to the support for our approach in Big Data scenarios. To exemplify the analytical value of graph models for business intelligence, we propose an analytical workflow to extract knowledge from graph-integrated business data. Finally, we show how we use Gradoop, a novel framework for distributed graph analytics, to implement our approach.

Recent publications

  • 2025 / 9: Generating Semantically Enriched Mobility Data from Travel Diaries
  • 2025 / 8: Slice it up: Unmasking User Identities in Smartwatch Health Data
  • 2025 / 7: MPGT: Multimodal Physics-Constrained Graph Transformer Learning for Hybrid Digital Twins
  • 2025 / 6: Leveraging foundation models and goal-dependent annotations for automated cell confluence assessment
  • 2025 / 6: SecUREmatch: Integrating Clerical Review in Privacy-Preserving Record Linkage

Footer menu

  • Directions
  • Contact
  • Impressum