Skip to main content

User account menu

  • Log in
DBS-Logo

Database Group Leipzig

within the department of computer science

ScaDS-Logo Logo of the University of Leipzig

Main navigation

  • Home
  • Study
    • Exams
      • Hinweise zu Klausuren
    • Courses
      • Current
    • Modules
    • LOTS-Training
    • Abschlussarbeiten
    • Masterstudiengang Data Science
    • Oberseminare
    • Problemseminare
    • Top-Studierende
  • Research
    • Projects
      • Benchmark datasets for entity resolution
      • FAMER
      • HyGraph
      • Privacy-Preserving Record Linkage
      • GRADOOP
    • Publications
    • Prototypes
    • Annual reports
    • Cooperations
    • Graduations
    • Colloquia
    • Conferences
  • Team
    • Erhard Rahm
    • Member
    • Former employees
    • Associated members
    • Gallery

Extracting Semantic Concept Relations from Wikipedia

Breadcrumb

  • Home
  • Research
  • Publications
  • Extracting Semantic Concept Relations from Wikipedia

Arnold, P. ; Rahm, E.

Extracting Semantic Concept Relations from Wikipedia

Proc. 4th Int. Conf. Web Intelligence, Mining and Semantics (WIMS)

2014 / 06

Paper

Abstract

Background knowledge as provided by repositories such as WordNet is of critical importance for linking or mapping ontologies and related tasks. Since current repositories are quite limited in their scope and currentness, we investigate how to automatically build up improved repositories by extracting semantic relations (e.g., is-a and part-of relations) from Wikipedia articles. Our approach uses a comprehensive set of semantic patterns, fi nite state machines and NLP techniques to process Wikipedia de nitions and to identify semantic relations between concepts. Our approach is able to extract multiple relations from a single Wikipedia article. An evaluation for di fferent domains shows the high quality and e ffectiveness of the proposed approach.

Recent publications

  • 2025 / 9: Generating Semantically Enriched Mobility Data from Travel Diaries
  • 2025 / 8: Slice it up: Unmasking User Identities in Smartwatch Health Data
  • 2025 / 6: SecUREmatch: Integrating Clerical Review in Privacy-Preserving Record Linkage
  • 2025 / 6: Leveraging foundation models and goal-dependent annotations for automated cell confluence assessment
  • 2025 / 5: Federated Learning With Individualized Privacy Through Client Sampling

Footer menu

  • Directions
  • Contact
  • Impressum