Skip to main content

User account menu

  • Log in
DBS-Logo

Database Group Leipzig

within the department of computer science

ScaDS-Logo Logo of the University of Leipzig

Main navigation

  • Home
  • Study
    • Exams
      • Hinweise zu Klausuren
    • Courses
      • Current
    • Modules
    • LOTS-Training
    • Abschlussarbeiten
    • Masterstudiengang Data Science
    • Oberseminare
    • Problemseminare
    • Top-Studierende
  • Research
    • Projects
      • Benchmark datasets for entity resolution
      • FAMER
      • HyGraph
      • Privacy-Preserving Record Linkage
      • GRADOOP
    • Publications
    • Prototypes
    • Annual reports
    • Cooperations
    • Graduations
    • Colloquia
    • Conferences
  • Team
    • Erhard Rahm
    • Member
    • Former employees
    • Associated members
    • Gallery

Flexible Integration of Molecular-biological Annotation Data: The GenMapper Approach

Breadcrumb

  • Home
  • Research
  • Publications
  • Flexible Integration of Molecular-biological Annotation Data: The GenMapper Approach

Do, H. ; Rahm, E.

Flexible Integration of Molecular-biological Annotation Data: The GenMapper Approach

Proc. EDBT 2004, Heraklion, Greece, Springer LNCS, March 2004.

2004 / 03

Paper

Futher information: http://lips.informatik.uni-leipzig.de:80/pub/2004-2

Abstract

Molecular-biological annotation data is continuously being collected, curated and made accessible in numerous public data sources. Integration of this data is a major challenge in bioinformatics. We present the GenMapper system that physically integrates heterogeneous annotation data in a flexible way and supports large-scale analysis on the integrated data. It uses a generic data model to uniformly represent different kinds of annotations originating from different data sources. Existing associations between objects, which represent valuable biological knowledge, are explicitly utilized to drive data integration and combine annotation knowledge from different sources. To serve specific analysis needs, powerful operators are provided to derive tailored annotation views from the generic data representation. GenMapper is operational and has been successfully used for large-scale functional profiling of genes. Interactive access is provided under http://www.izbi.de.

Recent publications

  • 2025 / 8: Slice it up: Unmasking User Identities in Smartwatch Health Data
  • 2025 / 6: SecUREmatch: Integrating Clerical Review in Privacy-Preserving Record Linkage
  • 2025 / 5: Federated Learning With Individualized Privacy Through Client Sampling
  • 2025 / 3: Automated Configuration of Schema Matching Tools: A Reinforcement Learning Approach
  • 2025 / 3: Assessing the Impact of Image Dataset Features on Privacy-Preserving Machine Learning

Footer menu

  • Directions
  • Contact
  • Impressum