Skip to main content

User account menu

  • Log in
DBS-Logo

Database Group Leipzig

within the department of computer science

ScaDS-Logo Logo of the University of Leipzig

Main navigation

  • Home
  • Study
    • Exams
      • Hinweise zu Klausuren
    • Courses
      • Current
    • Modules
    • LOTS-Training
    • Abschlussarbeiten
    • Masterstudiengang Data Science
    • Oberseminare
    • Problemseminare
    • Top-Studierende
  • Research
    • Projects
      • Benchmark datasets for entity resolution
      • FAMER
      • HyGraph
      • Privacy-Preserving Record Linkage
      • GRADOOP
    • Publications
    • Prototypes
    • Annual reports
    • Cooperations
    • Graduations
    • Colloquia
    • Conferences
  • Team
    • Erhard Rahm
    • Member
    • Former employees
    • Associated members
    • Gallery

A Clustering-based Approach For Large-scale Ontology Matching

Breadcrumb

  • Home
  • A Clustering-based Approach For Large-scale Ontology Matching

Algergawy, A. ; Maßmann, S. ; Rahm, E.

A Clustering-based Approach For Large-scale Ontology Matching

Proc. ADBIS Conf. 2011, LNCS 6909, pp. 415-428

2011 / 09

Paper

Abstract

Schema and ontology matching have attracted a great dealn of interest among researchers. Despite the advances achieved, the large matching problem still presents a real challenge, such as it is a time-consuming and memory-intensive process. We therefore propose a scalable, clustering-based matching approach that breaks up the large matching problem into smaller matching problems. In particular, we first introduce a structure-based clustering approach to partition each schema graph into a set of disjoint subgraphs (clusters). Then, we propose a new measure that efficiently determines similar clusters between every two sets of clusters to obtain a set of small matching tasks. Finally, we adopt the matching prototype COMA++ to solve individual matching tasks and combine their results. The experimental analysis reveals that the proposed method permits encouraging and significant improvements.

Recent publications

  • 2025 / 8: Slice it up: Unmasking User Identities in Smartwatch Health Data
  • 2025 / 6: SecUREmatch: Integrating Clerical Review in Privacy-Preserving Record Linkage
  • 2025 / 5: Federated Learning With Individualized Privacy Through Client Sampling
  • 2025 / 3: Assessing the Impact of Image Dataset Features on Privacy-Preserving Machine Learning
  • 2025 / 3: Automated Configuration of Schema Matching Tools: A Reinforcement Learning Approach

Footer menu

  • Directions
  • Contact
  • Impressum