Skip to main content

User account menu

  • Log in
DBS-Logo

Database Group Leipzig

within the department of computer science

ScaDS-Logo Logo of the University of Leipzig

Main navigation

  • Home
  • Study
    • Exams
      • Hinweise zu Klausuren
    • Courses
      • Current
    • Modules
    • LOTS-Training
    • Abschlussarbeiten
    • Masterstudiengang Data Science
    • Oberseminare
    • Problemseminare
    • Top-Studierende
  • Research
    • Projects
      • Benchmark datasets for entity resolution
      • FAMER
      • HyGraph
      • Privacy-Preserving Record Linkage
      • GRADOOP
    • Publications
    • Prototypes
    • Annual reports
    • Cooperations
    • Graduations
    • Colloquia
    • Conferences
  • Team
    • Erhard Rahm
    • Member
    • Former employees
    • Associated members
    • Gallery

Standardized container virtualization approach for collecting host intrusion detection data

Breadcrumb

  • Home
  • Research
  • Publications
  • Standardized container virtualization approach for collecting host intrusion detection data

Röhling, M. ; Grimmer, M. ; Kreußel, D. ; Hoffmann, J. ; Franczyk, B.

Standardized container virtualization approach for collecting host intrusion detection data

2019 Federated Conference on Computer Science and Information Systems (FedCSIS)

2019 / 09

Paper

Futher information: https://ieeexplore.ieee.org/abstract/document/8860005

Abstract

Anomaly-based Intrusion Detection Systems (IDS) can be instrumental in detecting attacks on IT systems. For evaluation and training of IDS, data sets containing samples of common security-scenarios are essential. Existing data sets are not sufficient for training modern IDS. This work introduces a new methodology for recording data that is useful in the context of intrusion detection. The approach presented is comprised of a system architecture as well as a novel framework for simulating security-related scenarios.

Recent publications

  • 2025 / 9: Generating Semantically Enriched Mobility Data from Travel Diaries
  • 2025 / 8: Slice it up: Unmasking User Identities in Smartwatch Health Data
  • 2025 / 7: MPGT: Multimodal Physics-Constrained Graph Transformer Learning for Hybrid Digital Twins
  • 2025 / 6: Leveraging foundation models and goal-dependent annotations for automated cell confluence assessment
  • 2025 / 6: SecUREmatch: Integrating Clerical Review in Privacy-Preserving Record Linkage

Footer menu

  • Directions
  • Contact
  • Impressum