Skip to main content

User account menu

  • Log in
DBS-Logo

Database Group Leipzig

within the department of computer science

ScaDS-Logo Logo of the University of Leipzig

Main navigation

  • Home
  • Study
    • Exams
      • Hinweise zu Klausuren
    • Courses
      • Current
    • Modules
    • LOTS-Training
    • Abschlussarbeiten
    • Masterstudiengang Data Science
    • Oberseminare
    • Problemseminare
    • Top-Studierende
  • Research
    • Projects
      • Benchmark datasets for entity resolution
      • FAMER
      • HyGraph
      • Privacy-Preserving Record Linkage
      • GRADOOP
    • Publications
    • Prototypes
    • Annual reports
    • Cooperations
    • Graduations
    • Colloquia
    • Conferences
  • Team
    • Erhard Rahm
    • Member
    • Former employees
    • Associated members
    • Gallery

Holger Märtens' Dissertation Defense

Breadcrumb

  • Home
  • Research
  • Graduations
  • Holger Märtens' Dissertation Defense

Name

Holger Märtens

Degree

Dipl.-Inf.

Topic

Beiträge zur dynamischen Lastbalancierung in parallelen Datenbanksystemen

Date

Tue, 06/24/2008 - 17:00

Room

Johannisgasse 26, 1-22

Supervisor (Universität Leipzig)

  • Prof. Dr. Erhard Rahm

Text

Holger Märtens Dissertation 1
Während der Verteidigung.

 

Holger Märtens Dissertation 2
Die Glückwunsche vom Promotionskomissionsvorsitzenden Prof. Gruhn

 

Holger Märtens Dissertation 3
Die Promotionskomission (v.l.): Prof. Schierwagen, Prof. Gruhn, Dr. Quasthoff

 

Holger Märtens Dissertation 4
“Was bedeutet das alles auf meinem Hut?”

 

Holger Märtens Dissertation 5
Herzlichen Glückwunsch, Herr Doktor!

 

Holger Märtens Dissertation 6
Überragend …

 

Recent publications

  • 2025 / 9: Generating Semantically Enriched Mobility Data from Travel Diaries
  • 2025 / 8: Slice it up: Unmasking User Identities in Smartwatch Health Data
  • 2025 / 6: SecUREmatch: Integrating Clerical Review in Privacy-Preserving Record Linkage
  • 2025 / 6: Leveraging foundation models and goal-dependent annotations for automated cell confluence assessment
  • 2025 / 5: Federated Learning With Individualized Privacy Through Client Sampling

Footer menu

  • Directions
  • Contact
  • Impressum