Skip to main content

User account menu

  • Log in
DBS-Logo

Database Group Leipzig

within the department of computer science

ScaDS-Logo Logo of the University of Leipzig

Main navigation

  • Home
  • Study
    • Exams
      • Hinweise zu Klausuren
    • Courses
      • Current
    • Modules
    • LOTS-Training
    • Abschlussarbeiten
    • Masterstudiengang Data Science
    • Oberseminare
    • Problemseminare
    • Top-Studierende
  • Research
    • Projects
      • Benchmark datasets for entity resolution
      • FAMER
      • HyGraph
      • Privacy-Preserving Record Linkage
      • GRADOOP
    • Publications
    • Prototypes
    • Annual reports
    • Cooperations
    • Graduations
    • Colloquia
    • Conferences
  • Team
    • Erhard Rahm
    • Member
    • Former employees
    • Associated members
    • Gallery

Cache Management for Shared Sequential Data Access

Breadcrumb

  • Home
  • Research
  • Publications
  • Cache Management for Shared Sequential Data Access

Rahm, E. ; Ferguson, D.

Cache Management for Shared Sequential Data Access

Information Systems, Vol. 18, No. 4, July 1993, pp. 197-213

1993

Paper

Abstract

This paper presents a new set of cache management algorithms for shared data objects that are accessed sequentially. I/O delays on sequentially accessed data is a dominant performance factor in many application domains, in particular for batch processing. Our algorithms fall into three classes: replacement, prefetching and scheduling strategies. Our replacement algorithms empirically estimate the rate at which the jobs are proceeding through the data. These velocity estimates are used to project the next reference times for cached data objects and our algorithms replace data with the longest time to re-use. The second type of algorithm performs asynchronous prefetching. This algorithm uses the velocity estimations to predict future cache misses and attempts to pre-load data to avoid these misses. Finally, we present a simple job scheduling strategy that increases locality of reference between jobs. Our new algorithms are evaluated through a detailed simulation study. Our experiments show that the algorithms substantially improve performance compared to traditional algorithms for cache management.

Recent publications

  • 2025 / 9: Generating Semantically Enriched Mobility Data from Travel Diaries
  • 2025 / 8: Slice it up: Unmasking User Identities in Smartwatch Health Data
  • 2025 / 7: MPGT: Multimodal Physics-Constrained Graph Transformer Learning for Hybrid Digital Twins
  • 2025 / 6: Leveraging foundation models and goal-dependent annotations for automated cell confluence assessment
  • 2025 / 6: SecUREmatch: Integrating Clerical Review in Privacy-Preserving Record Linkage

Footer menu

  • Directions
  • Contact
  • Impressum