Skip to main content

User account menu

  • Log in
DBS-Logo

Database Group Leipzig

within the department of computer science

ScaDS-Logo Logo of the University of Leipzig

Main navigation

  • Home
  • Study
    • Exams
      • Hinweise zu Klausuren
    • Courses
      • Current
    • Modules
    • LOTS-Training
    • Abschlussarbeiten
    • Masterstudiengang Data Science
    • Oberseminare
    • Problemseminare
    • Top-Studierende
  • Research
    • Projects
      • Benchmark datasets for entity resolution
      • FAMER
      • HyGraph
      • Privacy-Preserving Record Linkage
      • GRADOOP
    • Publications
    • Prototypes
    • Annual reports
    • Cooperations
    • Graduations
    • Colloquia
    • Conferences
  • Team
    • Erhard Rahm
    • Member
    • Former employees
    • Associated members
    • Gallery

Graph Sampling with Distributed In-Memory Dataflow Systems

Breadcrumb

  • Home
  • Research
  • Publications
  • Graph Sampling with Distributed In-Memory Dataflow Systems

Gomez, K. ; Täschner, M. ; Rostami, M. ; Rost, C. ; Rahm, E.

Graph Sampling with Distributed In-Memory Dataflow Systems

Proc. Datenbanksysteme für Business, Technologie und Web (BTW) 2021

2021 / 03

Andere

Futher information: https://dl.gi.de/handle/20.500.12116/35798

Abstract

Given a large graph, graph sampling determines a subgraph with similar characteristics for certain metrics of the original graph. The samples are much smaller thereby accelerating and simplifying the analysis and visualization of large graphs. We focus on the implementation of distributed graph sampling for Big Data frameworks and in-memory dataflow systems such as Apache Spark or Apache Flink and evaluate the scalability of the new implementations. The presented methods will be open source and be integrated into Gradoop, a system for distributed graph analytics.

Recent publications

  • 2025 / 9: Generating Semantically Enriched Mobility Data from Travel Diaries
  • 2025 / 8: Slice it up: Unmasking User Identities in Smartwatch Health Data
  • 2025 / 6: SecUREmatch: Integrating Clerical Review in Privacy-Preserving Record Linkage
  • 2025 / 6: Leveraging foundation models and goal-dependent annotations for automated cell confluence assessment
  • 2025 / 5: Federated Learning With Individualized Privacy Through Client Sampling

Footer menu

  • Directions
  • Contact
  • Impressum