Skip to main content

User account menu

  • Log in
DBS-Logo

Database Group Leipzig

within the department of computer science

ScaDS-Logo Logo of the University of Leipzig

Main navigation

  • Home
  • Study
    • Exams
      • Hinweise zu Klausuren
    • Courses
      • Current
    • Modules
    • LOTS-Training
    • Abschlussarbeiten
    • Masterstudiengang Data Science
    • Oberseminare
    • Problemseminare
    • Top-Studierende
  • Research
    • Projects
      • Benchmark datasets for entity resolution
      • FAMER
      • HyGraph
      • Privacy-Preserving Record Linkage
      • GRADOOP
    • Publications
    • Prototypes
    • Annual reports
    • Cooperations
    • Graduations
    • Colloquia
    • Conferences
  • Team
    • Erhard Rahm
    • Member
    • Former employees
    • Associated members
    • Gallery

Towards a Benchmark for Ontology Merging

Breadcrumb

  • Home
  • Research
  • Publications
  • Towards a Benchmark for Ontology Merging

Raunich, S. ; Rahm, E.

Towards a Benchmark for Ontology Merging

Proc. 7th OTM Workshop on Enterprise Integration, Interoperability and Networking (EI2N\'2012), Springer LNCS

2012 / 09

Paper

Abstract

Benchmarking approaches for ontology merging is challenging and has received little attention so far. A key problem is that there is in general no single best solution for a merge task and that merging may either be performed symmetrically or asymmetrically. As a first step to evaluate the quality of ontology merging solutions we propose the use of general metrics such as the relative coverage of the input ontologies, the compactness of the merge result as well as the degree of introduced redundancy. We use these metrics to evaluate three merge approaches for different merge scenarios.

Recent publications

  • 2025 / 9: Generating Semantically Enriched Mobility Data from Travel Diaries
  • 2025 / 8: Slice it up: Unmasking User Identities in Smartwatch Health Data
  • 2025 / 7: MPGT: Multimodal Physics-Constrained Graph Transformer Learning for Hybrid Digital Twins
  • 2025 / 6: Leveraging foundation models and goal-dependent annotations for automated cell confluence assessment
  • 2025 / 6: SecUREmatch: Integrating Clerical Review in Privacy-Preserving Record Linkage

Footer menu

  • Directions
  • Contact
  • Impressum