Skip to main content

User account menu

  • Log in
DBS-Logo

Database Group Leipzig

within the department of computer science

ScaDS-Logo Logo of the University of Leipzig

Main navigation

  • Home
  • Study
    • Exams
      • Hinweise zu Klausuren
    • Courses
      • Current
    • Modules
    • LOTS-Training
    • Abschlussarbeiten
    • Masterstudiengang Data Science
    • Oberseminare
    • Problemseminare
    • Top-Studierende
  • Research
    • Projects
      • Benchmark datasets for entity resolution
      • FAMER
      • HyGraph
      • Privacy-Preserving Record Linkage
      • GRADOOP
    • Publications
    • Prototypes
    • Annual reports
    • Cooperations
    • Graduations
    • Colloquia
    • Conferences
  • Team
    • Erhard Rahm
    • Member
    • Former employees
    • Associated members
    • Gallery

Towards the smart use of embedding and instance features for property matching

Breadcrumb

  • Home
  • Research
  • Publications
  • Towards the smart use of embedding and instance features for property matching

Ayala, D. ; Hernández, I. ; Ruiz, D. ; Rahm, E.

Towards the smart use of embedding and instance features for property matching

Proc. Int. Conf. on Data Engineering (ICDE), pp. 211-2116

2021 / 04

Andere

Abstract

Data integration tasks such as the creation and extension of knowledge graphs involve the fusion of heterogeneous entities from many sources. Matching and fusion of such entities require to also match and combine their properties (attributes. However, previous schema matching approaches mostly focus on two sources only and often rely on simple similarity measurements. They thus face problems in challenging use cases such as the integration of heterogeneous product entities frommany sources. We therefore present a new machine learning-based property matching approach called LEAPME (LEArning-based Property Matching with Embeddings) that utilizes numerous features of both property names and instance values. The approach heavily makes use of word embeddings to better utilize the domain-specific semantics of both property namesand instance values. The use of supervised machine learning helps exploit the predictive power of word embeddings. Our comparative evaluation against five baselines for several multi-source datasets with real-world data shows the high effectiveness of LEAPME.

Recent publications

  • 2025 / 8: Slice it up: Unmasking User Identities in Smartwatch Health Data
  • 2025 / 6: SecUREmatch: Integrating Clerical Review in Privacy-Preserving Record Linkage
  • 2025 / 5: Federated Learning With Individualized Privacy Through Client Sampling
  • 2025 / 3: Automated Configuration of Schema Matching Tools: A Reinforcement Learning Approach
  • 2025 / 3: Assessing the Impact of Image Dataset Features on Privacy-Preserving Machine Learning

Footer menu

  • Directions
  • Contact
  • Impressum