Skip to main content

User account menu

  • Log in
DBS-Logo

Database Group Leipzig

within the department of computer science

ScaDS-Logo Logo of the University of Leipzig

Main navigation

  • Home
  • Study
    • Exams
      • Hinweise zu Klausuren
    • Courses
      • Current
    • Modules
    • LOTS-Training
    • Abschlussarbeiten
    • Masterstudiengang Data Science
    • Oberseminare
    • Problemseminare
    • Top-Studierende
  • Research
    • Projects
      • Benchmark datasets for entity resolution
      • FAMER
      • HyGraph
      • Privacy-Preserving Record Linkage
      • GRADOOP
    • Publications
    • Prototypes
    • Annual reports
    • Cooperations
    • Graduations
    • Colloquia
    • Conferences
  • Team
    • Erhard Rahm
    • Member
    • Former employees
    • Associated members
    • Gallery

Multi-Party Privacy Preserving Record Linkage in Dynamic Metric Space

Breadcrumb

  • Home
  • Research
  • Publications
  • Multi-Party Privacy Preserving Record Linkage in Dynamic Metric Space

Sehili, Z. ; Rohde, F. ; Franke, M. ; Rahm, E.

Multi-Party Privacy Preserving Record Linkage in Dynamic Metric Space

Proc. 19. GI-Fachtagung für Datenbanksysteme für Business, Technologie und Web (BTW), 2021

2021 / 02

Paper

Abstract

We propose and evaluate several approaches for privacy-preserving record linkage for multiple data sources. To reduce the number of comparisons for scalability we propose a new pivot-based metric space approach that dynamically adapts the selection of pivots for additional sources and growing data volume. Furthermore, we investigate so-called early and late clustering schemes that either cluster matching records per additional source or holistically for all sources. A comprehensive evaluation for different datasets confirms the high effectiveness and efficiency of the proposed methods.

Recent publications

  • 2025 / 9: Generating Semantically Enriched Mobility Data from Travel Diaries
  • 2025 / 8: Slice it up: Unmasking User Identities in Smartwatch Health Data
  • 2025 / 6: SecUREmatch: Integrating Clerical Review in Privacy-Preserving Record Linkage
  • 2025 / 6: Leveraging foundation models and goal-dependent annotations for automated cell confluence assessment
  • 2025 / 5: Federated Learning With Individualized Privacy Through Client Sampling

Footer menu

  • Directions
  • Contact
  • Impressum