Skip to main content

User account menu

  • Log in
DBS-Logo

Database Group Leipzig

within the department of computer science

ScaDS-Logo Logo of the University of Leipzig

Main navigation

  • Home
  • Study
    • Exams
      • Hinweise zu Klausuren
    • Courses
      • Current
    • Modules
    • LOTS-Training
    • Abschlussarbeiten
    • Masterstudiengang Data Science
    • Oberseminare
    • Problemseminare
    • Top-Studierende
  • Research
    • Projects
      • Benchmark datasets for entity resolution
      • FAMER
      • HyGraph
      • Privacy-Preserving Record Linkage
      • GRADOOP
    • Publications
    • Prototypes
    • Annual reports
    • Cooperations
    • Graduations
    • Colloquia
    • Conferences
  • Team
    • Erhard Rahm
    • Member
    • Former employees
    • Associated members
    • Gallery

Graph-based Data Integration and Business Intelligence with BIIIG

Breadcrumb

  • Home
  • Research
  • Publications
  • Graph-based Data Integration and Business Intelligence with BIIIG

Petermann, A. ; Junghanns, M. ; Müller, R. ; Rahm, E.

Graph-based Data Integration and Business Intelligence with BIIIG

Proc. VLDB Conf., 2014 (Demo paper)

2014 / 09

Paper

Abstract

We demonstrate BIIIG (Business Intelligence with Integrated Instance Graphs), a new system for graph-based data integration and analysis. It aims at improving business analytics compared to traditional OLAP approaches by comprehensively tracking relationships between entities and making them available for analysis. BIIIG supports a largely automatic data integration pipeline for metadata and instance data. Metadata from heterogeneous sources are integrated in a so-called Unified Metadata Graph (UMG) while instance data is combined in a single integrated instance graph (IIG). A unique feature of BIIIG is the concept of business transaction graphs, which are derived from the IIG and which reflect all steps involved in a speci c business process. Queries and analysis tasks can refer to the entire instance graph or sets of business transaction graphs. In the demonstration, we perform all data integration steps and present analytic queries including pattern matching and graph-based aggregation of business measures.

Recent publications

  • 2025 / 9: Generating Semantically Enriched Mobility Data from Travel Diaries
  • 2025 / 8: Slice it up: Unmasking User Identities in Smartwatch Health Data
  • 2025 / 7: MPGT: Multimodal Physics-Constrained Graph Transformer Learning for Hybrid Digital Twins
  • 2025 / 6: Leveraging foundation models and goal-dependent annotations for automated cell confluence assessment
  • 2025 / 6: SecUREmatch: Integrating Clerical Review in Privacy-Preserving Record Linkage

Footer menu

  • Directions
  • Contact
  • Impressum