Skip to main content

User account menu

  • Log in
DBS-Logo

Database Group Leipzig

within the department of computer science

ScaDS-Logo Logo of the University of Leipzig

Main navigation

  • Home
  • Study
    • Exams
      • Hinweise zu Klausuren
    • Courses
      • Current
    • Modules
    • LOTS-Training
    • Abschlussarbeiten
    • Masterstudiengang Data Science
    • Oberseminare
    • Problemseminare
    • Top-Studierende
  • Research
    • Projects
      • Benchmark datasets for entity resolution
      • FAMER
      • HyGraph
      • Privacy-Preserving Record Linkage
      • GRADOOP
    • Publications
    • Prototypes
    • Annual reports
    • Cooperations
    • Graduations
    • Colloquia
    • Conferences
  • Team
    • Erhard Rahm
    • Member
    • Former employees
    • Associated members
    • Gallery

Mining and Ranking of Generalized Multi-Dimensional Frequent Subgraphs

Breadcrumb

  • Home
  • Research
  • Publications
  • Mining and Ranking of Generalized Multi-Dimensional Frequent Subgraphs

Petermann, A. ; Micale, G. ; Bergami, G. ; Pulvirenti, A. ; Rahm, E.

Mining and Ranking of Generalized Multi-Dimensional Frequent Subgraphs

Proc. International Conference on Digital Information Management (ICDIM) 2017

2017 / 09

Paper

Abstract

Frequent pattern mining is an important research field and can be applied to different labeled data structures ranging from itemsets to graphs. There are scenarios where a label can be assigned to a taxonomy and generalized patterns can be mined by replacing labels by their ancestors. In this work, we propose a novel approach to generalized frequent subgraph mining. In contrast to existing work, our approach considers new requirements from use cases beyond molecular databases. In particular, we support directed multigraphs as well as multiple taxonomies to deal with the different semantic meaning of vertices. Since results of generalized frequent subgraph mining can be very large, we use a fast analytical method of p-value estimation to rank results by significance. We propose two extensions of the popular gSpan algorithm that mine frequent subgraphs across all taxonomy levels. We compare both algorithms in an experimental evaluation based on a database of business process executions represented by graphs.

Recent publications

  • 2025 / 9: Generating Semantically Enriched Mobility Data from Travel Diaries
  • 2025 / 8: Slice it up: Unmasking User Identities in Smartwatch Health Data
  • 2025 / 6: SecUREmatch: Integrating Clerical Review in Privacy-Preserving Record Linkage
  • 2025 / 6: Leveraging foundation models and goal-dependent annotations for automated cell confluence assessment
  • 2025 / 5: Federated Learning With Individualized Privacy Through Client Sampling

Footer menu

  • Directions
  • Contact
  • Impressum