Skip to main content

User account menu

  • Log in
DBS-Logo

Database Group Leipzig

within the department of computer science

ScaDS-Logo Logo of the University of Leipzig

Main navigation

  • Home
  • Study
    • Exams
      • Hinweise zu Klausuren
    • Courses
      • Current
    • Modules
    • LOTS-Training
    • Abschlussarbeiten
    • Masterstudiengang Data Science
    • Oberseminare
    • Problemseminare
    • Top-Studierende
  • Research
    • Projects
      • Benchmark datasets for entity resolution
      • FAMER
      • HyGraph
      • Privacy-Preserving Record Linkage
      • GRADOOP
    • Publications
    • Prototypes
    • Annual reports
    • Cooperations
    • Graduations
    • Colloquia
    • Conferences
  • Team
    • Erhard Rahm
    • Member
    • Former employees
    • Associated members
    • Gallery

Oberseminare

Breadcrumb

  • Home
  • Oberseminare
  • Oberseminar WS 2024/25
  • Oberseminar SS 2024
  • Oberseminar WS 2023/24
  • Oberseminar SS 2023
  • Oberseminar WS 2022/23
  • 17. Zingst-Seminar 2022
  • Oberseminar WS 2021/22
  • Oberseminar SS 2021
  • Oberseminar WS 2020/21
  • Oberseminar SS 2020
  • Oberseminar WS 2019/20
  • Oberseminar SS 2019
  • Oberseminar WS 2018/19
  • 16. Zingst-Seminar 2018
  • Oberseminar WS 2017/18
  • Oberseminar SS2017
  • 15. Zingst-Seminar 2017
  • Oberseminar WS 2016/17
  • Oberseminar SS 2016
  • Oberseminar WS 2015/16
  • 14. Zingst-Seminar 2015
  • 13. Zingst-Seminar 2014
  • 12. Zingst-Seminar 2013
  • Oberseminar WS 2012/13
  • 11. Zingst-Seminar 2012
  • Oberseminar WS 2011/12
  • 10. Zingst-Seminar 2011
  • Oberseminar WS 2010/11
  • 9. Zingst-Seminar 2010
  • Oberseminar WS 2009/10
  • 8. Zingst-Seminar 2009
  • 7. Zingst-Seminar 2008
  • 6. Zingst-Seminar 2007
  • Oberseminar WS 2006/07
  • 5. Zingst-Seminar 2006
  • Oberseminar WS 2005/06
  • 4. Zingst-Seminar 2004
  • 3. Zingst-Seminar 2003
  • 2. Zingst-Seminar 2002
  • 1. Zingst-Seminar 2001

Recent publications

  • 2025 / 8: Slice it up: Unmasking User Identities in Smartwatch Health Data
  • 2025 / 6: SecUREmatch: Integrating Clerical Review in Privacy-Preserving Record Linkage
  • 2025 / 5: Federated Learning With Individualized Privacy Through Client Sampling
  • 2025 / 3: Assessing the Impact of Image Dataset Features on Privacy-Preserving Machine Learning
  • 2025 / 3: Automated Configuration of Schema Matching Tools: A Reinforcement Learning Approach

Footer menu

  • Directions
  • Contact
  • Impressum